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Abstract. If many micelles adsorb onto the same polymer molecule then they are said to form
a necklace. A minimal model of such a necklace is proposed and shown to be almost equivalent
to a one-dimensional fluid with nearest-neighbour interactions. The thermodynamic functions of
this fluid are obtained and then used to predict the change in the critical micellar concentration
of the surfactant in the presence of the polymer. If the amount of polymer is not too large there
are two critical micellar concentrations, one for micelles in necklaces and one for free micelles.

1. Introduction

Experiment has shown that some micelles adsorb strongly onto polymer chains. If the
polymer molecule is large enough many micelles can adsorb onto one molecule, forming
a necklace of micelles along the polymer chain. The most widely studied example is the
adsorption of micelles of sodium dodecyl sulphate (SDS) onto poly(ethylene oxide) (PEO);
see references [1, 2] and references therein. See reference [3] for work on other systems.
The interaction energy of a micelle with a polymer chain can be strong, many timeskT (the
thermal energy), and has a large effect on both the polymer and the micelle. The favourable
interaction of a micelle with the polymer reduces the surfactant density at which the micelles
form; the critical micellar concentration (cmc) is reduced, whilst if many micelles adsorb
onto a single polymer the repulsive micelle–micelle interactions cause the polymer chain to
swell; the radius of gyration may increase by a factor of two. Below, we propose a simple
minimal model for necklaces of micelles adsorbed on a polymer chain. We then go on to
calculate the free energy of such a necklace and use this to determine when they form and
to look at the competition between free micelles and micelles bound to polymer.

A polymer chain is a linear object; its topological dimension is 1 [4]. So, two micelles
adsorbed onto a chain cannot pass each other without one of them detaching from the
polymer chain. Therefore the necklace of micelles along a polymer chain behaves as a one-
dimensional system. In the limit in which the polymer molecule is very long the necklace
is a 1-d bulk fluid. We assume that the micelle–micelle interactions are repulsive and so no
two micelles can approach each other closely. This restriction on the relative positions of
the micelles of the necklace restricts the configurations that the polymer can adopt and so
reduces its entropy. At high density of micelles the micelles are closely spaced along the
polymer—that is, the pieces of polymer between the micelles are quite short—and so these
short pieces of polymer have to stretch in order to bridge the gaps between the micelles.
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This loss of entropy eventually limits the number of micelles which adsorb on a polymer
and when the polymer chains are saturated with micelles, free micelles are formed.

In the next section we derive from first principles a theory of objects with excluded-
volume interactions, which are adsorbed onto a linear polymer. This is our main result. Our
results are not qualitatively new; they are, however, semiquantitative, unlike previous work
whose accuracy was only qualitative [5]. Our mapping onto a one-dimensional problem
should also allow the semiquantitative treatment of more complex systems than those studied
here, such as micelles adsorbed onto semidilute polymers. First, the polymer-mediated
interaction between two micelles is derived, yielding a potential of mean force for the
intermicellar interaction. Then this is combined with a theory of one-dimensional fluids
to provide the equation of state of particles adsorbed onto a polymer. This is then used
in section 3 to calculate the equation of state of a necklace. Combining the equation of
state with a standard theory of micelle formation [6, 7] then allows us to calculate how
many micelles will form, both absorbed on polymer and free, as a function of the surfactant
density. Finally, we discuss possible extensions of the theory and model.

Figure 1. A schematic picture of a polymer coil with a necklace of micelles. The polymer chain
is the black curve and the micelles adsorbed onto the chain are represented by dotted circles of
diameterD.

2. Theory for necklaces of micelles

The system is a mixture of surfactant and polymer in a common solvent; the mixture is
dilute, i.e. the fraction of the volume taken up by the surfactant and polymer is small. The
polymer is composed of coils of sizeS, whereS is proportional to the number of monomers
of a polymer molecule [8, 9]. The coils are ideal, Gaussian, coils and if unperturbed the
mean square distance between the two ends of a coil equalsS. Thus S has dimensions
of length squared, andS1/2 is the single relevant length scale for the polymer [8, 9]. We
are assuming that the polymer’s Kuhn length is much smaller than any length that we
consider explicitly. Our theory is entirely mesoscopic: the micelle is treated simply as
a sphere and the polymer–micelle interaction is not considered explicitly but is treated
phenomenologically via an association constant. A schematic diagram of the model is
presented in figure 1. The constant1µ is the difference in excess chemical potential
between a micelle bound to a piece of a polymer chain and a free micelle. Here, excess
means the chemical potential minus its ideal-gas part: lnρ, whereρ is the (1- or 3-d) density.
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If 1µ is negative the micelles will tend to adsorb on the chain [10]. This adsorption is
due to part of the polymer chain lying near the surface of the micelle and interacting via
an attractive interaction with it [2]. However, for simplicity we treat the polymer–micelle
interaction as that between the micelle and a point on the polymer; we ignore the amount of
polymer taken up in adsorbing to the micelle. With this simplification a micelle adsorbed
onto a polymer coil is free to move along the entire contour length of the polymerS.
Because the fractal dimension of the polymer is two not one, its contour length in many
ways resembles an area, e.g. the end-to-end distance increases as the square root of the
sizeS1/2. This is why the contour length has units of lengthsquared. As the polymer is a
1-d chain of monomers the micelle acts as a particle on a wire. Even though the polymer
is tracing out a an extremely convoluted path through 3-d space the configurational space
available to a micelle adsorbed onto the polymer is only 1-d.

If there is more than one micelle adsorbed on the same polymer coil then the micelles
will interact with each other. We model the micelle–micelle interaction via a simple hard-
sphere interaction: no two micelles’ centres may be within a distanceD of each other.
The size of the micelles,D, is much less than that of a coil,S1/2, allowing many micelles
to adsorb onto one coil. Above, we assumed that the polymer–micelle adsorption was
pointlike, i.e. a negligible amount of the polymer is adsorbed onto a micelle and we have
just assumed that two micelles interact with each other out to a distanceD. For these two
assumptions to be consistent the physical size of the micelles must be much smaller than
the range at which two micelles interact. Essentially, we must have a micelle of diameter
�D which is quite highly charged so that no other micelle can approach withinD [7, 11].
As micelles are typically 3–4 nm in diameter,D � 4 nm.

The limit of few micelles adsorbed onto a polymer chain, when micelle–micelle
interactions are unimportant, is trivial (at our phenomenological level of description). It
is just the free energy of a polymer coil plus the excess free energy of a free micelle plus
1µ plus the log of the 1-d density of micelles on the chain. The first of these is a reference
free energy, which we need not specify, and the free energy of a free micelle and1µ are
parameters of our model. However, at higher densities micelles on the same coil interact.
They do so when the micelles are close together, i.e. when the pieces of polymer which
connect adjacent micelles are short. The partition function of a piece of polymer chain with
a micelle at each end is different from the partition function of the same length of chain
without the micelles. In evaluating the partition function when the micelles are present,
we must exclude those configurations in which the two micelles’ hard spheres overlap.
This is done in the following section, and in section 2.1 we use that result to calculate
the thermodynamic functions for a necklace of micelles in the limit in which the coil is
infinitely long. In section 2.2 this result is used to determine the free energy of a necklace
at any density.

2.1. The interaction between two micelles adsorbed onto the same polymer coil

We consider two micelles adsorbed onto a coil and separated by a contour length of polymer
S12. The probability of this separation of the micelles is proportional to the partition function
of the chain at this separation. The two micelles have split the coil into three pieces, the
one between them of lengthS12 and the two end pieces. The three parts are independent as
the coil is ideal. Only the partition function of the centre piece is affected by the micelles;
the end pieces are free to adopt any configuration but the ends of the centre piece are each
attached to a micelle and so, because of the micelle–micelle interaction, they must be at least
D apart. The partition function of a chain of lengthS12 whose ends are constrained to be at
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Figure 2. The polymer-mediated, effective interactionw between two micelles adsorbed onto
a polymer coil, as a function of their separationS12.

leastD apart is easy to calculate. The partition function for a chain with ends separated by
r, divided by its partition function when free, is just the probability distribution functionφ

for the ends of an unconstrained chain, times dr. Now, φ is [8]

φ(S12, r) =
(

3

2πS12

)3/2

exp

(−3r2

2S12

)
. (1)

Thus, the partition function with the ends at leastD apart, divided by the partition function
for an unconstrained chain, is simply

4π
∫ ∞
D

φ(S12, r)r
2 dr = 1− 4

π1/2

∫ (3/2)1/2D/S1/2
12

0
x2 exp(−x2) dx = exp[−w(S12/D

2)].

(2)

The second equality definesw, the effective interaction potential between two neighbouring
micelles. The probability of the micelles beingS12 apart,P(S12/D

2), is directly related to
the partition function of the chain when the micelles areS12 apart:

P(S12/D
2) = exp[−w(S12/D

2)]

/(∫
exp[−w(S12/D

2)] dS12

)
(3)

for an infinitely long polymer. We see that exp[−w(S12/D
2)] is acting as a Boltzmann

weight and sow is an effective interaction; it is plotted in figure 2. The interactionw
is an athermal but soft repulsion. When two micelles are bound to the polymer less then
S

1/2
12 ∼ D apart along a polymer chain then the chain has to stretch to cross the distance

between the micelles, which must be>D. Conventionally, the Boltzmann weight is the
exponential of minus an energy of interaction but here it is the exponential of minus the free
energy of the piece of polymer coil. However, despite its unusual originw behaves just as
an interaction energy. The pair of micelles behave as a pair of particles on a wire which
interact via a potentialw. In the following section we usew to obtain the thermodynamic
functions of a fluid of many micelles on one polymer coil.

2.2. A one-dimensional fluid of micelles on a polymer coil

When many micelles are adsorbed onto the same coil they behave as a 1-d fluid. Formally
we will take theS/D2→∞ limit, producing an infinite fluid. We do not consider effects
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due to the finite size of the polymer coils. Each micelle’s movement is restricted by the
micelle in front and the micelle behind. As the system is effectively 1-d, the micelles form a
fluid at all densities; they never solidify or undergo a liquid–vapour transition [12, 13]. Due
to the convoluted path taken by the chain, non-adjacent micelles can interact; indeed this
interaction will cause the coil to swell and change from being Gaussian to being swollen
[8, 14]. However, these interactions are weak in comparison to the interactions between
nearest-neighbour micelles and so will be neglected for the purpose of determining the
free energy of the necklace of micelles. Each micelle always interacts with the micelles
in front and behind it but collisions between different parts of the chain are relatively
infrequent [14].

0.0 1.0 2.0 3.0 4.0
ρ1d

−5.0

0.0

5.0

10.0

15.0

20.0

µ 1d
/T

Figure 3. The chemical potential of a 1-d fluid of micelles on a polymer coil, interacting via
the potentialw.

Therefore we have a simple 1-d fluid. As the interaction between micelles is mediated
via the polymer chain the interaction is strictly nearest neighbour. The free energy of the
coil is simply a sum of the free energies of the pieces between the micelles and so is just
a function of all of theS12s between neighbouring micelles. The statistical mechanics of
1-d fluids with nearest-neighbour interactions is both well studied and simple [13]. We start
from the canonical partition functionZN(S) of N micelles on a coil of lengthS. As usual
for 1-d systems, molecules fixed at each end of the system define its limits. So, with a
micelle fixed at coordinatex0 and one atxN , ZN is

ZN(S) =
∫
xi<xi+1

N∏
i=1

dxi exp

[
−
N+1∑
i=1

w(xi − xi−1)

]
(4)

where the factor of 1/N ! is absent because we have put the micelles into a sequence: the
ith micelle is always the left-hand neighbour of the(i + 1)th micelle [13]. The units are
defined so that the thermal energykT is unity. Progress can be made if we move to the
isothermal–isobaric ensemble [13, 15], introducing the pressurep which is the conjugate
variable to the lengthS. The isothermal–isobaric partition functionZN(p) is

ZN(p) =
∫
ZN(S) exp(−pS) dS. (5)

Following the method of Takahashi [13] we note that as the(N + 1)th particle defines the
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limit of our system,xN+1 = S. Then if we define the new coordinatesri = xi − xi−1,

ZN(p) =
∫
ri>0

N+1∏
i=1

dri exp

[
−
N+1∑
i=1

{w(ri)+ pri}
]
=
(∫ ∞

0
dr exp[−w(r)− pr]

)N+1

(6)

the partition function has reduced to a simple 1-d integration. The chemical potentialµ1d

is, substitutingN for N + 1 in equation (6),

µ1d = − 1

N
lnZN(p) = − ln

∫ ∞
0

dr exp[−w(r)− pr] (7)

which givesµ1d as a function of the pressurep. We would like it as a function of the
reduced 1-d densityρ1d = ND2/S. The densityρ1d is obtained from

ρ1d =
(
∂µ1d

∂pD2

)−1

. (8)

Using equation (2) in equation (7) and then equation (8) yieldsµ1d as a function of
densityρ1d ; it is plotted in figure 3. Notice that the chemical potential is almost a linear
function of density at high density. For future use we define an excess chemical potential
µex = µ1d − ln ρ1d . We now possess the chemical potential of a necklace of micelles as
a function of the density of micelles along the polymer chain. In order to determine the
density of micelles along a polymer as a function of the surfactant density we require a
model for the formation of micelles.

3. Micelle formation

Our model for micelle formation is quite standard [6, 7]. We start by assuming that the
surfactant monomers, the free micelles and the micelles bound to polymer coils form an
ideal ternary mixture. The only interactions considered are those between micelles bound
to the same polymer; interactions involving free micelles or monomers are neglected as
the surfactant+ polymer solution is dilute. The ternary mixture’s density and composition
are specified by three densities: the density of surfactant monomersρ0 = N0D

3/V , of
free micellesρfm = NfmD

3/V and of bound micellesρbm = NbmD
3/V . N0, Nfm and

Nbm are the numbers of surfactant monomers, free micelles and micelles bound to polymer,
respectively, andV is the volume. The 1-d density of micelles along the polymer chains
ρ1d is related to the density of bound micelles in the mixtureρbm by

ρbm = ρpρ1d (9)

whereρp = NpSD/V is a ‘segment’ density of the polymer. It is the number density of
segments of polymer of sizeD2, timesD3. Np is the number of polymer coils. Below,
we treat (i) the monomers and free micelles and (ii) the micelles bound to polymer as
constituting two different bulk phases. The polymer densityρp just defines the relative
volumes of these two parts of our system.

At equilibrium the chemical potential of a surfactant is the same if it is a monomer
or is part of either type of micelle. Then the chemical potential of a micelle composed
of m surfactant molecules ism times that of a monomer. For the chemical potential of a
monomer to be equal to that in a free micelle [6, 7]

m(ln ρ0+ µ0) = ln ρfm + µmic (10)
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and for it to equal that in a bound micelle

m(ln ρ0+ µ0) = µ1d(ρ1d)+ µmic +1µ = µ1d(ρbm/ρp)+ µmic +1µ (11)

where we used equation (9) to go from the middle to the right-hand-side expression. We
have assumed that the number of surfactant molecules in a micelle ism for both free and
bound micelles. Micelles are of course not monodisperse and so this is an approximation,
although the numbers of micelles much larger or smaller than the most probable size are
small [6, 7]. The constantsµ0 andµmic are the contributions to the chemical potentials of
the monomers and micelles, respectively, of the interactions. They are the change in free
energy, in excess of the lnρ term, of the system when a monomer or a micelle is inserted
[7]. We have neglected the contribution from the momentum degrees of freedom. Thus,
µmic − mµ0 is the difference between the chemical potential (minus the lnρ terms) ofm
surfactant molecules in a micelle andm surfactant monomers.

The first equation for equilibrium between monomers and micelles, equation (10), is
easily rewritten in the familiar form

ρfm = ρm0 exp(mµ0− µmic). (12)

The most convenient thermodynamic variable to work in isρ0 which corresponds to
controlling the chemical potential of the surfactant: lnρ0 + µ0. The second equation for
equilibrium, equation (11), cannot be rewritten in the form ‘ρbm equals a function ofρ0’
because the right-hand side includesµ1d which is not a simple logarithmic or linear function
of ρbm. If ρp, µmic and1µ are specified, then equation (11) can be solved as a non-linear
equation forρbm, at any value ofρ0.
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Figure 4. The density of surfactant monomersρ0 (solid curve), and of free micellesρfm (dashed
curve) as a function of total surfactant densityρ. mµ0 − µmic = 45 andm = 20. There is no
polymer present.

The total number density of surfactant is proportional toρ = ρ0/m + ρfm + ρbm. As
all three of the densities (ρ0, ρfm andρbm) are made dimensionless by multiplying byD3,
the volume fraction of the surfactant is approximately equal toρ times the physical volume
of a micelle divided byD3. The physical volume of a micelle is the volume actually
occupied by the surfactant molecules. As the physical volume is much less thanD3, the
surfactant’s volume fraction is much less thanρ. In figures 4 and 5 we plot the densities
of monomers and micelles as functions of this total surfactant density. In figure 4 we have
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Figure 5. The density of surfactant monomersρ0 (solid curve), of free micellesρfm (dashed
curve), and of bound micellesρfm (chain curve) as a function of total surfactant densityρ.
mµ0 − µmic = 45,m = 20,1µ = −15 andρp = 0.01.

no polymer and there are only free micelles. The critical micellar concentration (cmc) [7]
is clearly around 10−2, although it is not that well defined as our aggregation numberm

is not that large,m = 20. In figure 5, the value ofµmic is unchanged from figure 4 but
there is polymer present. As1µ is negative, the polymer stabilizes the micelles. This has
two effects: micelles form at lower densities, the polymer encourages micelle formation
and micelles ‘prefer’ to be adsorbed onto a polymer than to be free. So, at low densities
where there are few micelles they are nearly all adsorbed onto polymer chains; the density
of free micelles is very low, belowρ ' 3× 10−2. As the density of micelles increases
the density of micelles on the polymer chains becomes quite high and the interaction free
energy of these micelles,µex , is large. The polymer chains are stretching to accommodate
the micelles and this stretching is reducing the configurational entropy of the polymer. This
reduces the free-energy reduction on adsorption and so we see that free micelles start to
form. From equations (10) and (11), it is easy to see that whenµex = ln ρp − 1µ the
numbers of free and bound micelles are the same.

Notice that the density of surfactant at which free micelles appear is much higher in
figure 5 than in figure 4 because the monomer density is depleted by the formation of bound
micelles. Free micelles appear at aρ0 determined solely byµmic—see equation (12)—but
this corresponds to a higherρ if there is competition for monomers. Theρ0-curve of figure 5
looks as if there are two cmcs; it has two steps while that in figure 4 has only one. The first
is where bound micelles form and the rate of increase ofρ0 decreases sharply. Then as the
density of bound micelles increases the polymer chains become crowded, micelle formation
becomes less favourable and the rate of increase ofρ0 increases. At yet higher density,
free micelles form and the rate of increase ofρ0 decreases again. Of course, if the polymer
densityρp increases, then the polymer chains saturate at higher surfactant densities and the
second ‘cmc’ is pushed to higher values ofρ.

The formation of a necklace of micelles causes the ideal polymer coil to expand for
two reasons: it stretches the pieces of the polymer chain between the micelles and the
micelle–micelle interaction results in the chain being swollen, like a polymer coil in a good
solvent [8, 14]. Without micelles, the radius of gyration of the polymerRG = S1/2/

√
6.

At low densities of micelles,ρ1d . 1, the radius of gyration is difficult to estimate as the
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micelles cover only a fraction of the chain. Therefore some parts, with micelles, repel each
other but other, bare, parts do not. However, forρ1d > 1 almost all of the chain is covered
with micelles. In order to minimize the stretching of the polymer the spacing between the
micelles will be quite regular and nearD. So, we can consider the chain as being composed
of ρ1dS/D

2 segments of length∼D. Then, as the chain is swollen,RG ∼ (ρ1dS/D
2)3/5D.

As S � D2, this is much larger thanS1/2.

4. Conclusion

Perhaps the simplest possible model of polymer coils with necklaces of micelles has been
proposed and studied. The simplicity of the model has allowed a detailed examination of its
behaviour to be carried out with only very minor approximations. This differs from previous
theoretical work [5] which involved a highly approximate treatment of a much more detailed,
and so complex, model. We have shown that the 1-d topology [4] of a polymer chain implies
that the necklace behaves as a 1-d fluid. This allowed us to determine the behaviour of the
necklace using the highly developed theory for 1-d systems [13]. In combination with a
standard theory for micelle formation it was then straightforward to calculate the densities
of micelles formed; see figure 5.

The model was kept simple for the sake of simplicity and clarity. For the purposes of
comparison with experiment a more complex and accurate model is required. The theory
presented here can be extended to deal with the most unrealistic features of the model.
For example, the theory neglects the finite size of the polymer coils. Micelles are quite
large,∼4 nm across, and so if the polymer coil is small there may be room for only a
few micelles to adsorb without stretching the polymer so much that it is not favourable for
adsorbing another micelle. Then the fluid of micelles is not a bulk fluid. The finite size of
the coil corresponds to a 1-d fluid between two walls,S apart. Confined 1-d fluids have
been considered extensively; see reference [16]. The coils studied in experiment [2] are in
a good solvent and so are swollen. Therefore it would be worthwhile to extend our theory
for ideal coils to self-avoiding coils. Although self-avoiding coils are more complex and
difficult to deal with than ideal coils [8, 14], enough is known about their free energy when
they are stretched [14] to perform at least a scaling theory of a polymer with a micellar
necklace. Experimental results [11] on a semidilute solution of polymer clearly show the
competition between polymer entropy and the free energy of adsorption which we have
observed here. We hope that the theory developed here can be applied even to this system.
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